A Review on Common Approaches Used for Graphene Characterization

Authors

  • Omar S. Dahham Department of Chemical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
  • Khalid Al-Zamili 2Department of Oil and Gas Refinery Engineering, Al-Farabi University College, Baghdad, Iraq
  • Nik Noriman Zulkepli Faculty of Mechanical Engineering Technology, Universiti Malaysia Perlis, Perlis, Malaysia

DOI:

https://doi.org/10.59746/jfes.v2i2.79

Keywords:

Graphene, Graphite, Characterization, Morphology, Raman Spectroscopy

References

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Materials, vol. 6, no. 3, pp. 183–191, Mar. 2007, doi: https://doi.org/10.1038/nmat1849. DOI: https://doi.org/10.1038/nmat1849

P. Avouris and C. Dimitrakopoulos, “Graphene: synthesis and applications,” Materials Today, vol. 15, no. 3, pp. 86–97, Mar. 2012, doi: https://doi.org/10.1016/s1369-7021(12)70044-5. DOI: https://doi.org/10.1016/S1369-7021(12)70044-5

B. Luo, S. Liu, and L. Zhi, “Chemical Approaches toward Graphene-Based Nanomaterials and their Applications in Energy-Related Areas,” Small, vol. 8, no. 5, pp. 630–646, Nov. 2011, doi: https://doi.org/10.1002/smll.201101396. DOI: https://doi.org/10.1002/smll.201101396

C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj, “Graphene: The New Two-Dimensional Nanomaterial,” Angewandte Chemie International Edition, vol. 48, no. 42, pp. 7752–7777, Oct. 2009, doi: https://doi.org/10.1002/anie.200901678. DOI: https://doi.org/10.1002/anie.200901678

J. Liu, L. Cui, D. Losic, Graphene and graphene oxide as new nanocarriers for drug delivery applications, Acta Biomater. 9 (2013) 9243–9257, http://dx.doi. org/10.1016/j.actbio.2013.08.016. DOI: https://doi.org/10.1016/j.actbio.2013.08.016

E. Quesnel et al., “Graphene-based technologies for energy applications, challenges and perspectives,” vol. 2, no. 3, pp. 030204–030204, Aug. 2015, doi: https://doi.org/10.1088/2053-1583/2/3/030204. DOI: https://doi.org/10.1088/2053-1583/2/3/030204

S. P. Surwade et al., “Water desalination using nanoporous single-layer graphene,” Nature Nanotechnology, vol. 10, no. 5, pp. 459–464, May 2015, doi: https://doi.org/10.1038/nnano.2015.37. DOI: https://doi.org/10.1038/nnano.2015.37

K. Yang, L. Feng, and Z. Liu, “Stimuli responsive drug delivery systems based on nano-graphene for cancer therapy,” Advanced Drug Delivery Reviews, vol. 105, pp. 228–241, Oct. 2016, doi: https://doi.org/10.1016/j.addr.2016.05.015. DOI: https://doi.org/10.1016/j.addr.2016.05.015

M. Núñez-Regueiro, “Yaşlı Kadınlarda Üreme Sağlığı,” DergiPark (Istanbul University), vol. 1, no. 1, Feb. 2015, doi: https://doi.org/10.1016/j.

B. Marinho, M. Ghislandi, E. Tkalya, C. E. Koning, and G. de With, “Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder,” Powder Technology, vol. 221, pp. 351–358, May 2012, doi: https://doi.org/10.1016/j.powtec.2012.01.024. DOI: https://doi.org/10.1016/j.powtec.2012.01.024

M. Amoretti et al., “Production and detection of cold antihydrogen atoms,” Nature, vol. 419, no. 6906, pp. 456–459, Oct. 2002, doi: https://doi.org/10.1038/nature01096. DOI: https://doi.org/10.1038/419439a

R. K. Joshi, S. Alwarappan, M. Yoshimura, V. Sahajwalla, and Y. Nishina, “Graphene oxide: the new membrane material,” Applied Materials Today, vol. 1, no. 1, pp. 1–12, Nov. 2015, doi: https://doi.org/10.1016/j.apmt.2015.06.002. DOI: https://doi.org/10.1016/j.apmt.2015.06.002

Y. Song, Y. Luo, C. Zhu, H. Li, D. Du, and Y. Lin, “Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials,” Biosensors and Bioelectronics, vol. 76, pp. 195–212, Feb. 2016, doi: https://doi.org/10.1016/j.bios.2015.07.002. DOI: https://doi.org/10.1016/j.bios.2015.07.002

E. O. Polat, H. B. Uzlu, O. Balci, N. Kakenov, E. Kovalska, and C. Kocabas, “Graphene-Enabled Optoelectronics on Paper,” ACS Photonics, vol. 3, no. 6, pp. 964–971, Jun. 2016, doi: https://doi.org/10.1021/acsphotonics.6b00017. DOI: https://doi.org/10.1021/acsphotonics.6b00017

X. Wang, W. Xie, and J.-B. Xu, “Graphene Based Non-Volatile Memory Devices,” Advanced Materials, vol. 26, no. 31, pp. 5496–5503, Feb. 2014, doi: https://doi.org/10.1002/adma.201306041. DOI: https://doi.org/10.1002/adma.201306041

Q. Ke and J. Wang, “Graphene-based materials for supercapacitor electrodes – A review,” Journal of Materiomics, vol. 2, no. 1, pp. 37–54, Mar. 2016, doi: https://doi.org/10.1016/j.jmat.2016.01.001. DOI: https://doi.org/10.1016/j.jmat.2016.01.001

F. Schwierz, “Graphene transistors,” Nature Nanotechnology, vol. 5, no. 7, pp. 487–496, May 2010, doi: https://doi.org/10.1038/nnano.2010.89. DOI: https://doi.org/10.1038/nnano.2010.89

F. Withers et al., “Light-emitting diodes by band-structure engineering in van der Waals heterostructures,” Nature Materials, vol. 14, no. 3, pp. 301–306, Mar. 2015, doi: https://doi.org/10.1038/nmat4205. DOI: https://doi.org/10.1038/nmat4205

H.-J. Choi, S.-M. Jung, Jeong Gil Seo, Dong Kyung Chang, L. Dai, and J.-B. Baek, “Graphene for energy conversion and storage in fuel cells and supercapacitors,” Nano Energy, vol. 1, no. 4, pp. 534–551, Jul. 2012, doi: https://doi.org/10.1016/j.nanoen.2012.05.001. DOI: https://doi.org/10.1016/j.nanoen.2012.05.001

K. J. Tielrooij et al., “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nature Physics, vol. 9, no. 4, pp. 248–252, Feb. 2013, doi: https://doi.org/10.1038/nphys2564. DOI: https://doi.org/10.1038/nphys2564

S. S. Gupta, T. S. Sreeprasad, S. M. Maliyekkal, S. K. Das, and T. Pradeep, “Graphene from Sugar and its Application in Water Purification,” ACS Applied Materials & Interfaces, vol. 4, no. 8, pp. 4156–4163, Jul. 2012, doi: https://doi.org/10.1021/am300889u. DOI: https://doi.org/10.1021/am300889u

G. Wang, X. Shen, J. Yao, and J. Park, “Graphene nanosheets for enhanced lithium storage in lithium ion batteries,” Carbon, vol. 47, no. 8, pp. 2049–2053, Jul. 2009, doi: https://doi.org/10.1016/j.carbon.2009.03.053. DOI: https://doi.org/10.1016/j.carbon.2009.03.053

Y. Wu, T. Yu, and Z.-X. Shen, “Two-dimensional carbon nanostructures: Fundamental properties, synthesis, characterization, and potential applications,” vol. 108, no. 7, pp. 071301–071301, Oct. 2010, doi: https://doi.org/10.1063/1.3460809. DOI: https://doi.org/10.1063/1.3460809

. A. J. Van Bommel, J. E. Crombeen, and A. Van Tooren, “LEED and Auger electron observations of the SiC(0001) surface,” Surface Science, vol. 48, no. 2, pp. 463–472, Mar. 1975, doi: https://doi.org/10.1016/0039-6028(75)90419-7. DOI: https://doi.org/10.1016/0039-6028(75)90419-7

De Heer W., The development of epitaxial graphene for 21st century electronics; ar Xiv: 1012. 1644v1.

W. A. de Heer et al., “Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide,” Proceedings of the National Academy of Sciences, vol. 108, no. 41, pp. 16900–16905, Sep. 2011, doi: https:// doi.org/10.1073/pnas.1105113108. DOI: https://doi.org/10.1073/pnas.1105113108

J. Hass et al., “Highly ordered graphene for two dimensional electronics,” Applied Physics Letters, vol. 89, no. 14, p. 143106, Oct. 2006, doi: https://doi.org/10.1063/1.2358299.

Hass, J., Milla ́n-Otoya, J.E., First, P.N., Conrad, E.H.: Interface structure of epitaxial graphene grown on 4H-SiC(0001). Phys Rev B 78, 205424 (2008). doi:10.1103/PhysRevB.78.205424 DOI: https://doi.org/10.1103/PhysRevB.78.205424

C. Berger et al., “Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics,” The Journal of Physical Chemistry B, vol. 108, no. 52, pp. 19912–19916, Dec. 2004, doi: https://doi.org/10.1021/jp040650f. DOI: https://doi.org/10.1021/jp040650f

I. Forbeaux, J.-M. Themlin, A. Charrier, F. Thibaudau, and J.-M. Debever, “Solid-state graphitization mechanisms of silicon carbide 6H–SiC polar faces,” Applied Surface Science, vol. 162–163, pp. 406–412, Aug. 2000, doi: https://doi.org/10.1016/s0169-4332(00)00224-5. DOI: https://doi.org/10.1016/S0169-4332(00)00224-5

J. Hass et al., “Highly ordered graphene for two dimensional electronics,” Applied Physics Letters, vol. 89, no. 14, p. 143106, Oct. 2006, doi: https://doi.org/10.1063/1.2358299. DOI: https://doi.org/10.1063/1.2358299

A. Reina et al., “Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition,” Nano Letters, vol. 9, no. 1, pp. 30–35, Jan. 2009, doi: https://doi.org/10.1021/nl801827v. DOI: https://doi.org/10.1021/nl801827v

K. S. Kim et al., “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature, vol. 457, no. 7230, pp. 706–710, Jan. 2009, doi: https://doi.org/10.1038/nature07719. DOI: https://doi.org/10.1038/nature07719

X. Li et al., “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science, vol. 324, no. 5932, pp. 1312–1314, May 2009, doi: https://doi.org/10.1126/science.1171245. DOI: https://doi.org/10.1126/science.1171245

Q. Wang, X. Wang, Z. Chai, and W. Hu, “Low-temperature plasma synthesis of carbon nanotubes and graphene based materials and their fuel cell applications,” Chemical Society Reviews, vol. 42, no. 23, p. 8821, 2013, doi: https://doi.org/10.1039/c3cs60205b. DOI: https://doi.org/10.1039/c3cs60205b

V. H. Pham et al., “One-step synthesis of superior dispersion of chemically converted graphene in organic solvents,” Chemical Communications, vol. 46, no. 24, p. 4375, 2010, doi: https://doi.org/10.1039/c0cc00363h. DOI: https://doi.org/10.1039/c0cc00363h

S. Guo, S. Dong, and E. Wang, “Three-Dimensional Pt-on-Pd Bimetallic Nanodendrites Supported on Graphene Nanosheet: Facile Synthesis and Used as an Advanced Nanoelectrocatalyst for Methanol Oxidation,” ACS Nano, vol. 4, no. 1, pp. 547–555, Dec. 2009, doi: https://doi.org/10.1021/nn9014483. DOI: https://doi.org/10.1021/nn9014483

X. Wang et al., “Large-Scale Synthesis of Few-Layered Graphene using CVD,” Chemical Vapor Deposition, vol. 15, no. 1–3, pp. 53–56, Mar. 2009, doi: https://doi.org/10.1002/cvde.200806737. DOI: https://doi.org/10.1002/cvde.200806737

K. V. Emtsev, F. Speck, T. Seyller, L. Ley, and J. G. Riley, “Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study,” Physical Review B, vol. 77, no. 15, Apr. 2008, doi: https://doi.org/10.1103/physrevb.77.155303. DOI: https://doi.org/10.1103/PhysRevB.77.155303

L. S. Panchakarla, A. Govindaraj, and R. Rao, “Boron- and nitrogen-doped carbon nanotubes and graphene,” Inorganica Chimica Acta, vol. 363, no. 15, pp. 4163–4174, Dec. 2010, doi: https://doi.org/10.1016/j.ica.2010.07.057. DOI: https://doi.org/10.1016/j.ica.2010.07.057

Y.-M. . Lin et al., “100-GHz Transistors from Wafer-Scale Epitaxial Graphene,” Science, vol. 327, no. 5966, pp. 662–662, Feb. 2010, doi: https://doi.org/10.1126/science.1184289. DOI: https://doi.org/10.1126/science.1184289

K. S. Novoselov et al., “Two-dimensional gas of massless Dirac fermions in graphene,” Nature, vol. 438, no. 7065, pp. 197–200, 2005, doi: https://doi.org/10.1038/nature04233. DOI: https://doi.org/10.1038/nature04233

X. Chen, L. Zhang, and S. Chen, “Large area CVD growth of graphene,” Synthetic Metals, vol. 210, pp. 95–108, Dec. 2015, doi: https://doi.org/10.1016/j.synthmet.2015.07.005. DOI: https://doi.org/10.1016/j.synthmet.2015.07.005

Liu, Zhongfan, Li Lin, Huaying Ren, and Xiao Sun. "CVD synthesis of graphene." In Thermal transport in carbon-based nanomaterials, pp. 19-56. Elsevier, 2017. DOI: https://doi.org/10.1016/B978-0-32-346240-2.00002-9

D. Fray, A. Kamali, Method of Producing Graphene, Google Patents, 2017.

A. Wu, X. Li, J. Yang, C. Du, W. Shen, and J. Yan, “Upcycling Waste Lard Oil into Vertical Graphene Sheets by Inductively Coupled Plasma Assisted Chemical Vapor Deposition,” Nanomaterials, vol. 7, no. 10, p. 318, Oct. 2017, doi: https://doi.org/10.3390/nano7100318. DOI: https://doi.org/10.3390/nano7100318

Bo, Zheng, Mu Yuan, Shun Mao, Xia Chen, Jianhua Yan, and Kefa Cen. "Decoration of vertical graphene with tin dioxide nanoparticles for highly sensitive room temperature formaldehyde sensing." Sensors and Actuators B: Chemical 256 (2018): 1011-1020. DOI: https://doi.org/10.1016/j.snb.2017.10.043

K. Krishnamoorthy, G.-S. Kim, and S. J. Kim, “Graphene nanosheets: Ultrasound assisted synthesis and characterization,” Ultrasonics Sonochemistry, vol. 20, no. 2, pp. 644–649, Mar. 2013, doi: https://doi.org/10.1016/j.ultsonch.2012.09.007. DOI: https://doi.org/10.1016/j.ultsonch.2012.09.007

V. Abdelsayed, S. Moussa, Hassan M.A. Hassan, Hema Aluri, M. M. Collinson, and M. Samy El‐Shall, “Photothermal Deoxygenation of Graphite Oxide with Laser Excitation in Solution and Graphene-Aided Increase in Water Temperature,” The Journal of Physical Chemistry Letters, vol. 1, no. 19, pp. 2804–2809, Sep. 2010, doi: https://doi.org/10.1021/jz1011143. DOI: https://doi.org/10.1021/jz1011143

Y. Zhou et al., “Microstructuring of Graphene Oxide Nanosheets Using Direct Laser Writing,” Advanced Materials, vol. 22, no. 1, pp. 67–71, Jan. 2010, doi: https://doi.org/10.1002/adma.200901942. DOI: https://doi.org/10.1002/adma.200901942

J. Chen, B. Yao, C. Li, and G. Shi, “An improved Hummers method for eco-friendly synthesis of graphene oxide,” Carbon, vol. 64, pp. 225–229, Nov. 2013, doi: https://doi.org/10.1016/j.carbon.2013.07.055. DOI: https://doi.org/10.1016/j.carbon.2013.07.055

C. Liu, G. Hu, and H. Gao, “Preparation of few-layer and single-layer graphene by exfoliation of expandable graphite in supercritical N,N-dimethylformamide,” The Journal of Supercritical Fluids, vol. 63, pp. 99–104, Mar. 2012, doi: https://doi.org/10.1016/j.supflu.2012.01.002. DOI: https://doi.org/10.1016/j.supflu.2012.01.002

S. Bae et al., “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nature nanotechnology, vol. 5, no. 8, pp. 574–8, 2010, doi: https://doi.org/10.1038/nnano.2010.132. DOI: https://doi.org/10.1038/nnano.2010.132

Ved Prakash Verma, S. Das, I. Lahiri, and W. Choi, “Large-area graphene on polymer film for flexible and transparent anode in field emission device,” Applied Physics Letters, vol. 96, no. 20, pp. 203108–203108, May 2010, doi: https://doi.org/10.1063/1.3431630. DOI: https://doi.org/10.1063/1.3431630

Chen, Z.H., Lin, Y.M., Rooks, M.J., Avouris, P.: Graphene nano-ribbon electronics. Phys. E-Low-Dimens. Syst. Nanos- tructures 40(2), 228–232 (2007). doi:10.1016/j.physe.2007.06. 020 DOI: https://doi.org/10.1016/j.physe.2007.06.020

D. B. Shinde, J. Debgupta, A. Kushwaha, M. Aslam, and V. K. Pillai, “Electrochemical Unzipping of Multi-walled Carbon Nanotubes for Facile Synthesis of High-Quality Graphene Nanoribbons,” Journal of the American Chemical Society, vol. 133, no. 12, pp. 4168–4171, Mar. 2011, doi: https://doi.org/10.1021/ja1101739. DOI: https://doi.org/10.1021/ja1101739

A. G. Cano-Márquez et al., “Ex-MWNTs: Graphene Sheets and Ribbons Produced by Lithium Intercalation and Exfoliation of Carbon Nanotubes,” Nano Letters, vol. 9, no. 4, pp. 1527–1533, Mar. 2009, doi: https://doi.org/10.1021/nl803585s. DOI: https://doi.org/10.1021/nl803585s

L. Jiao, X. Wang, G. Diankov, H. Wang, and H. Dai, “Facile synthesis of high-quality graphene nanoribbons,” Nature Nanotechnology, vol. 5, no. 5, pp. 321–325, Apr. 2010, doi: https://doi.org/10.1038/nnano.2010.54. DOI: https://doi.org/10.1038/nnano.2010.54

L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, “Narrow graphene nanoribbons from carbon nanotubes,” Nature, vol. 458, pp. 877–880, Apr. 2009, doi: https://doi.org/10.1038/nature07919. DOI: https://doi.org/10.1038/nature07919

Krane, N. (2011). Preparation of graphene. Selected topics in physics: physics of nanoscale carbon, 872-876.

Z.-S. Wu et al., “Synthesis of Graphene Sheets with High Electrical Conductivity and Good Thermal Stability by Hydrogen Arc Discharge Exfoliation,” ACS Nano, vol. 3, no. 2, pp. 411–417, Feb. 2009, doi: https://doi.org/10.1021/nn900020u. DOI: https://doi.org/10.1021/nn900020u

Z. Wang, N. Li, Z. Shi, and Z. Gu, “Low-cost and large-scale synthesis of graphene nanosheets by arc discharge in air,” Nanotechnology, vol. 21, no. 17, p. 175602, Apr. 2010, doi: https://doi.org/10.1088/0957-4484/21/17/175602. DOI: https://doi.org/10.1088/0957-4484/21/17/175602

N. Li, Z. Wang, K. Zhao, Z. Shi, Z. Gu, and S. Xu, “Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method,” Carbon, vol. 48, no. 1, pp. 255–259, Jan. 2010, doi: https://doi.org/10.1016/j.carbon.2009.09.013. DOI: https://doi.org/10.1016/j.carbon.2009.09.013

V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, “High-throughput solution processing of large-scale graphene,” Nature Nanotechnology, vol. 4, no. 1, pp. 25–29, Nov. 2008, doi: https://doi.org/10.1038/nnano.2008.329. DOI: https://doi.org/10.1038/nnano.2008.329

J. Chen, L. Chen, Z. Zhang, J. Li, L. Wang, and W. Jiang, “Graphene layers produced from carbon nanotubes by friction,” Carbon, vol. 50, no. 5, pp. 1934–1941, Apr. 2012, doi: https://doi.org/10.1016/j.carbon.2011.12.044. DOI: https://doi.org/10.1016/j.carbon.2011.12.044

A. Gedanken, “Using sonochemistry for the fabrication of nanomaterials,” Ultrasonics Sonochemistry, vol. 11, no. 2, pp. 47–55, Apr. 2004, doi: https://doi.org/10.1016/j.ultsonch.2004.01.037. DOI: https://doi.org/10.1016/j.ultsonch.2004.01.037

M. Veerapandian, S. Sadhasivam, J. Choi, and K. Yun, “Glucosamine functionalized copper nanoparticles: Preparation, characterization and enhancement of anti-bacterial activity by ultraviolet irradiation,” Chemical Engineering Journal, vol. 209, pp. 558–567, Oct. 2012, doi: https://doi.org/10.1016/j.cej.2012.08.054. DOI: https://doi.org/10.1016/j.cej.2012.08.054

C. Deng, H. Hu, X. Ge, C. Han, D. Zhao, and G. Shao, “One-pot sonochemical fabrication of hierarchical hollow CuO submicrospheres,” vol. 18, no. 5, pp. 932–937, Sep. 2011, doi: https://doi.org/10.1016/j.ultsonch.2011.01.007. DOI: https://doi.org/10.1016/j.ultsonch.2011.01.007

D. V. Pinjari and A. B. Pandit, “Room temperature synthesis of crystalline CeO2 nanopowder: Advantage of sonochemical method over conventional method,” Ultrasonics Sonochemistry, vol. 18, no. 5, pp. 1118–1123, Sep. 2011, doi: https://doi.org/10.1016/j.ultsonch.2011.01.008. DOI: https://doi.org/10.1016/j.ultsonch.2011.01.008

V. Safarifard and A. Morsali, “Sonochemical syntheses of a nano-sized copper (II) supramolecule as a precursor for the synthesis of copper (II) oxide nanoparticles,” Ultrasonics Sonochemistry, vol. 19, no. 4, pp. 823–829, Jul. 2012, doi: https://doi.org/10.1016/j.ultsonch.2011.12.013. DOI: https://doi.org/10.1016/j.ultsonch.2011.12.013

A. Ramadoss and S. J. Kim, “Synthesis and characterization of HfO2 nanoparticles by sonochemical approach,” Journal of Alloys and Compounds, vol. 544, pp. 115–119, Dec. 2012, doi: https://doi.org/10.1016/j.jallcom.2012.08.005. DOI: https://doi.org/10.1016/j.jallcom.2012.08.005

Downloads

Published

2024-01-19